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Electron correlation is known to have an important influence on the results of molecular orbital 
calculations, but is not usually directly included in such calculations. An analysis of the general theory 
of electron correlation leads to a pair correlation hypothesis, which serves as a basis for the subsequent 
derivation of a way of explicitly allowing for electron correlation in the LCAOMO energy. The derived 
expressions carry significant implications for the semi-empirical parameter schemes of all-valence- 
electron methods, implying that they cannot be regarded as incorporating the correct form of correla- 
tion correction. This points to the advantage of aiming at a theoretically founded parameter scheme 
in approximate molecular orbital calculations, designed to produce approximate Hartree-Fock 
molecular wave functions. The electron correlation correction can then be applied to the expression 
for the total valence electron energy as developed in the present paper. 

Bekanntlich hat die Elektronenkorrelation einen wichtigen Einflug auf die Resultate yon MO- 
Berechnungen. Sie wird jedoch gew6hnlich nicht direkt in solche Berechnungen mit einbezogen. 
Eine Analyse der allgemeinen Theorie der Elektronenkorrelationen fiihrt zu einer Paar-Korrelations- 
hypothese, die als Grundlage f/Jr die Ableitung einer Methode dient, um die Elektronenkorrelation 
explizit in der LCAOMO-Energie zu beriicksichtigen. Die abgeleiteten Ausdriicke wirken sich stark 
auf semi-empirische Parameter-Schemata von Methoden unter EinschluB aller Valenzelektronen aus, 
woraus folgt, dab diese keine korrekte Beriicksichtigung der Korrelationskorrekturen enthalten. 
Es ist also vorzuziehen, theoretisch begriindete Parameter-Schemata in Ngherungs-MO Berechnungen 
anzustreben, die zu N~iherungs-Hartree-Fock-Molekiil-Funktionen fiihren sollen. Die Elektronen- 
korrelationskorrektur kann dann bei dem Ausdruck fiir die totale Valenzelektronen-Energie angewendet 
werden, wie es in der vorliegenden Arbeit dargestellt wird. 

La corr61ation 61ectronique a une influence importante sur les r6sultats des calculs d'orbitales 
mol6culaires mais n'est pas d'ordinaire incluse dans ces calculs. Une analyse de la th6orie g6n6rale 
de la corr61ation 61ectronique conduit g une hypoth6se de corr61ation de paire que l'on utilise pour 
trouver un moyen explicite de tenir compte de la corr61ation 61ectronique dans l'6nergie LCAOMO. 
Les expressions que l'on obtient contiennent des implications significatives pour les sch6ma semi- 
empiriques des m&hodes/~ 61ectrons de valence, montrant que ces m6thodes ne contiennent pas la 
corr61ation 61ectronique sous une forme correcte. Ceci indique l'int6rfit d'un sch6ma param6trique 
th6oriquement fond6 dans les m6thodes Hartree-Fock approch6es. La correction de corr61ation 
61ectronique peut alors atre appliqu6e ~t l'6nergie totale des 61ectrons de valence ainsi que cela est 
expos6 dans cet article. 

1. In troduct ion  

T h e  n e c e s s i t y  of  m a k i n g  a l l o w a n c e  for  e l e c t r o n  c o r r e l a t i o n  effects in  o r d e r  

to  o b t a i n  n u m e r i c a l  r e s u l t s  of  " c h e m i c a l  a c c u r a c y "  ( b e t t e r  t h a n  1 eV) is wel l  

k n o w n  [1] .  In  fact  t h e  c o r r e c t i o n  for  e l e c t r o n  c o r r e l a t i o n  m a y  a m o u n t  to  as m u c h  

* Present address: Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520, 
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as 1 eV per doubly occupied orbital [1]. Relatively few calculations of correlation 
energies for molecules have been reported to date but various methods are available 
and have been reviewed by L6wdin [2], Sinano~lu [1] and Nesbet [3]. Here we 
shall follow the Sinano~lu many-electron theory of atoms and molecules [1], 
writing the total many-electron wave function ~ as a sum of Hartree-Fock and 
electron correlation parts: 

(P = ~ + ~ .... (1) 

subject to the conditions 

(~HF, ~ . r>  = 1, <~HF, ~r = 0.  

In previous parts [4-6] we set out to devise various all-valence-electron methods 
capable of producing approximate Hartree-Fock wave functions. We now seek 
an approximate correlation correction Er to be added to the Hartree-Fock 
energy estimated by these methods: 

E.O.-r., = EH F -t- E . . . .  (2) e x a c t  

2. Pair Correlation Energies 

Evidence has been mounting over recent years that the correlation energy 
is additive in pairs, i.e. 

E~orr = ~ s~ ~ (3) 
i>j 

In summary the main evidence is: 
(i) Intuitive; that since electrons of opposite spin are constrained to be paired 

in the Hartree-Fock case, the main contributions to the total correlation energy 
will come from these pairs. 

(ii) Theoretical; in both the Sinano~lu many-electron theory already de- 
scribed, and in the results of Nesbet [7] for a perturbation theory based on the 
superposition of configurations method, allowing only doubly excited configura- 
tions. 

(iii) Semi-empirical; results of atomic Hartree-Fock calculations including 
relativistic corrections for series of atoms and ions when compared with experi- 
mental energies indicate that electron correlation is additive in pairs (Allen, 
Clementi, and Gladney [8]). 

Further, such evidence indicates that, to "chemical accuracy", only pair 
correlations between electrons of opposite spin in the same quantum shell are 
important. That is to say we may, to the first approximation, neglect correlations 
between electrons in different shells (intershell or "dispersion"-type correlation). 
It is argued (Ruedenberg [9], Salem [10]) that pair correlations between electrons 
of the same spin ("Fermi" correlations) are already included in the Hartree-Fock 
method through the quantum mechanical exchange integral (ijtji). 

The question of the transferability of pair correlation energies is an important 
one. How sensitive, for instance, are the pair correlation energies to their environ- 
ment? An important distinction made by Sinano~lu is that between "dynamical" 
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Table, Pair correlation energies in neutral atoms (eV)" 

Ref. He Li Be B C N O F Ne 

First row atoms 

Er (total) 
8oo. (Is ~) 
&o,~ (ls - 2s) 
eoo. (2s z) 
e~o. (2s - 2p) 
ecorr (2p 2) 
e~o~(2p~) est. 

[13] 1.146 1.233 2.569 3.401 4.299 5,115 7,020 ~ 8.816 
[13] 1,146 1.184 1.205 1.219 1.227 1.233 1.238 1.241 
b 0.025 0.115 0.115 0.115 0.115 0.115 0.t15 
[ t l ]  ~ 1.132 0.811 0.457 0 0 0 

1.14 1.19 1.22 1.0 1.0 
d 0.52 0.40 
[11] 1.0 1.0 

10.693 
1.243 
0.115 
0.014 
1.0 
0.36 
1,0 

Na  Mg A1 Si P S CI A 

Second row atoms 

E~o,r (n = 3) [14] 0.190 1.279 1.986 2.857 3.673 5.605 7.347 9.306 
~o~ ( c o r e -  3s) b 0.190 0.224 0.225 0.225 0.225 0.225 0.225 0.225 
gr (3s 2) [12] ~ 0.832 0.479 0.286 0 0 0 0 
er (3s - 3p) 1.06 1.06 1.07 1.0 1.0 1.0 
e~or r (3p2) d 0.39 0.32 0,32 
~o~ (3P 2) est, ~ 0.8 0.8 0.8 

Fermi pair correlation energies are neglected. 
e(ls 2 - 2s 2) and g(core - 3s 2) are assumed transferable across their respective rows. 

c e~o~(ns 2) depends on the total electron population of the np orbitals. For molecular calculations, 
use the method of Hollister and Sinanoglu [16] to estimate this. 

a t~o~(np2) is an average pair correlation energy, having contributions from 'P and 'D pairs. This 
is the appropriate energy for molecular calculations when Eqs. (36) and (36A) of the text are used. 

This work, using the method of Ref. [11] and the results of Ref. [14]. 

and "non-dynamical" parts of the pair correlation energies. The former are in- 
sensitive to the surrounding Hartree-Fock "sea" and consequently may be trans- 
ferred from atom to atom or molecule to molecule. The latter are quite dependent 
on their environment. 

The total correlation problem is now composed of a set of variational problems 
each involving only pairs of electrons. Fortunately the correlation energies 
e . . . .  ( l s2 ) ,  er and gcorr(3p 2) for atoms are "dynamical" in nature and hence 
transferable from atom to atom [1]. However e .... (2s 2) and er 2) are non- 
dynamical, varying with atomic number and decreasing along their respective 
rows of the Periodic Table [11, 12]. 

Calculated values of e .... (2s 2) [11] and eco~r(3s 2) [12] may thus be used in 
conjunction with the total correlation energies of Clementi [13-15] to give the 
pair correlation energies in neutral atoms listed in the Table. In composing the Table, 
a number of assumptions have been made: that Fermi correlations are negligible; 
that the er 2) and the core correlation energies of second row atoms are trans- 
ferable from the He and Ne isoelectronic series, respectively; and that e .... ( l s -  2s) 
and ~oo~(core- 3s) are transferable across their respective rows of the Periodic 
Table. 

Another important aspect of electron correlation is apparent from the virial 
theorem [2], which is automatically satisfied in the Hartree-Fock approach. Thus 

T I ~  = - �89 Vnv = - - E H v  (4) 



294 R.D. Brown and K. R. Roby: 

where T and V represent the total kinetic and potential energies respectively. 
It follows that 

Tcorr : I __ - -  "~ Veor r  - -  - - E  . . . .  (5) 

and since Eco,r is negative, the kinetic energy correlation correction T c o r r  is positive 
and the potential energy correlation correction is negative. Thus Tnv is too low, 
the electrons having a more complex motion than we have allowed for, while 
VHF is to high, correlation preventing the electrons from coming too closely 
together. Correlation affects both kinetic and potential energies. 

We shall therefore write 

E . . . .  = ~ 

i>i 

eij . . . . .  _ 0 unless electrons i and j are of opposite spin and occupy orbitals in the 
same quantum shell. Then from (5) 

e ~ ; r r  = t~;rr + v ~ ; r r  ( 6 )  

and 
e o r r  i ,~corr eorr tij - - ~ i j  = - e i j  (7) 

with t~j ~ and v~j ~ being the kinetic energy and potential energy parts, respectively, 
of the pair correlation energy ~~ 

This hypothesis receives some support, and a further possibility arises, from 
the work of Parr [17] and Kutzelnigg [18]. Ab initio calculations on the helium 
atom by these two authors indicate that the above virial theorem does apply 
in this particular case, and that the nuclear-electron interaction energy is only 
slightly affected by correlation. This result needs to be tested on systems containing 
more than two electrons, but for the time being we may use as a working hypo- 
thesis the conclusion: 

The total electron correlation energy reduces to a sum of pair correlation 
energies. The major part of this total correlation energy arises from the motion 
of pairs of electrons in the same quantum shell and having opposite spin. Each 
separate pair correlation energy may be partitioned via the virial theorem into a 
correction to the kinetic energy and a correction to the potential energy of electron 
repulsion. The correlation is assumed, for the time being, to affect the nuclear- 
electron attraction energy in a negligible way. 

3. Pair Correlations in the L C A O M O  Method 

The pair correlation hypothesis of the previous section has provided the basis 
for the treatment of electron correlation in molecular orbital theory. It remains 
to derive a way of including pair correlation energies in the energy calculated 
via the LCAOMO method. Starting from the pair correlation energy formula 
by Sinanoglu [-19] for spin orbitals ~v i and ~vj: 

. . . . .  2 <B(zj), m i j u l j  ) + ( u i j  , (e i + ej -]- mq)uij> 
8ij - -  . / ~  .A .. (8) 

1 + <,uo, uq2 
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with u~ the pair correlation wave function, B the two electron antisymmetrizer 
and m u is called the "fluctuation potential" [1]. It takes the form 

m,j = Ou + (Jo - KO) - (Gr(i) + G,(j)) (9) 

where Gr(i) represents the Coulomb-exchange operation (~(i)-/s for spin 
orbital j acting on electron i and Jj and Kj are the Coulomb and exchange re- 
pulsion operators defined by Roothaan: 

~lpi=e2(  ~ ~)~(j)lpj(j)dvj) q~,(i), 
ri r 

r~ r 

Finally in Eq. (8), e~ is defined by 

e, = F - e, (10) 

where/~ is the Hartree-Fock operator for the spin orbitals ~&, i.e. 

( P  - ~,) ~, = O .  

We obtain 

e i ~I . . . .  (i) + G(i) - H i i -  ~ (J,k -- Kik) 
k # i  

[/~ .... ( i ) - - H i , ] + [ G ( i ) - - 7 ( J i k - - g , k )  ] (11) 

[core Hamiltonian term] + [electron repulsion term].  

Since the m u of Eq. (8) involve only electron repulsion terms, we may write: 

( ~ ,  (e, + ej + mir) uu> = (uu,  (H . . . .  (~) - -  Hii -]- H .... (j)  - -  H j j )  IAij ) 
(12) 

k # ,  ,~ej 

In such a way, the e~jorr may be partitioned into two terms as follows: 

~ ,  Dq .... ( i)-  U .  + ~q .... ( j ) -  Hrj] u,~> g~;rr 
1 + <~, ~> (13) 

+ {2(B( i j ) ,  A A } m,j u,j> + (u,j ,  [G(i) - ~ (4k- -  K~k) + G(j) -- ~(J jk - -  Kjk) + m,j] ~j> 
k k 

{1 ' //~ /~-~-i �9 -]-- (~blij , blir2~ . 

The first term is the correlation correction to the core Hamiltonian, the second 
the correlation correction to electron repulsion. According to the pair correlation 
correction hypothesis, the former is mainly a kinetic energy correction. Therefore 
we may write 

. . . . . . . . . . . . .  (14) ~ij - -  tij -}- v,j 

where t~ rr is the pair correlation kinetic energy and is identified with the first 
term of Eq. (13), while v~j ~ is the pair correlation potential energy and is identified 
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with the second term of Eq. (13). Thus 

en~ ~exac t  EHF § E 2 (t~J ~ § V~; rr) 
i j > i  

2 Hii § ~ 2 (Jij - Kij § t~j ~ § V~j~ �9 
i i j > i  

But 
A ~ , / x  

(uii, (H .... (') - Hu) uii) + 
t~;" = 1 + <u~, u~> 

('~iij, ( I2t .... (]) - H jj)ui/~) 
/x /-, 

1 + <u 0, uij> 

(15) 

(16) 

This suggests the further definition: 

nu) uij) ti, o~r= ~ (U/~l , (/lco~e(i)/., --,. /" 
j ,  ~ 1 + <u v, u~j) 

(17) 

The pair correlation kinetic energy may be used as a correction to the core 
Hamiltonian matrix: 

En~ el ~ ~ (Hu § t~/~ + ~ ~ (Jij - Kij +/)7  rr) (18) 
i i j > i  

an important expression for the following development. 
When we change from sums over occupied spin orbitals ~Pi to sums over the 

occupied molecular space orbitals (MO's) r each r may contain two electrons 
having opposite spin. Factors of two accordingly appear before H. ,  and J~j, 
i and j now referring to MO's. On the other hand Kq applies only to electrons of 
like spin while eli ~ by the pair correlation hypothesis, applies only to electrons 
of opposite spin. Thus for MO's: 

Een~ = ~(2Hii + tc~ § ~'~ 2 (2JiJ - KiJ + V~j~ " (19) 
i j 

Now we introduce L C A O M O  approximation: 

r = ~ Ci, Z, (20) 
u 

where the Z are atomic orbitals. Since B(ij) is simply a two electron Slater deter- 
minant, we immediately have: 

B(ij) = ~ ~ C~, Cj~ B(pv). (21) 
,u v 

Writing t~HF as a Slater determinant of molecular orbitals q~i, we apply the 
LCAO expansion to two of these MO's, q5 i and ~bj, for the purpose of showing 
how the LCAO expansion applied to the corresponding pair correlation function u'~j: 

'~.~-- Ir ~1 4,2 7~2... r ~, q ~  ... r r (22) 
= E E c,.q~ Ir ~, . . .  r 1 6 2  . . . . @  ... ~:27~:~1 

# v 
= 2 2 Ci, G.(DHF),* (23) 

.u v 

where (DHF)u v is the Slater determinant containing Z. and Z,. 
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Now the definition of the exact ~//j given in Ref. [1] is: 

~ ( 4~I~F > (24) bllj= ~'c . . . .  ( / j)  

where the q~'cor~ is a complex many-electron function and where q~HF/(ij) is obtained 
by dropping ~b~ and ~bj from the Slater determinant, as below. The integration is 
over all electrons except the two electrons contained in r and ~bj so that u u is 
a two-electron function. Thus we have: 

~ H F  
(q) - - ]~b l  ~1 "'" ~i--1 ~i "'"-~j-1 ~j "'" ~)N/2~)N/21 

= Z Z C,It Cj~ (DnF)It" 
It ~ (~ v) 

where (DHF)uv/(~V) is obtained by leaving out the pair of atomic orbitals ZIt and 
Z~ from the Slater determinant in which they occur. Then, 

u%.= E 2 C,It C;~uq~ (26) 
# v 

if we make the definition, by analogy with Eq. (24): 

~ "  < DHF> (27) 
u . ~ =  e ;  . . . .  (uv) " 

Then, for example, 

tle/~ = 2 2 CiitCiv 2 2 2 Cj.~Cj a <uq;,, (t~t . . . .  ( i ) -Hu)~> 
It ~ j z ~ l + ( ~ , ~ j >  (28) 

It v )~ a 
Since 

and 

(25) 

t . . . . .  < ~ ; ~ ,  ([~ . . . .  (i) -- Hi l )~a> 
(~, ~)d-~. (30) 

Applying a similar treatment to the v~ ~ we obtain the following expression 
for the L C A O M O  energy: 

EMO=~,~P .~  ~ Hu~ + �88 ~ P;~t('~[[~) + �89 ~ P;~[(pvl2a)- �89 + 1 ...... n) '~(it~, w ) J ; "  
It v ( 2, o- 2, a 

(31) 
Since the integrals t ( ~ . )  and vr176 cannot be evaluated at the present time, 

expression (31) is so far purely formal. However it does illustrate the way in which 
electron correlation acts as a kinetic energy correction to the core Hamiltonian 
matrix, and as a potential energy correction to the electron repulsion integrals. 
It is to be compared to the usual L C A O M O  electronic energy involving the neglect 
of electron correlation: 

(32) 
It v l ),,a J 

21 Theoret. chim. Aeta (BerL) Vol. 16 

P;,~ = 2 Z Cj~ Cj, (29) 
J 
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The splitting of the pair correlation energies into kinetic and potential parts 
is necessary in order to form a critique of semi-empirical parameter schemes 
(Sect. 6). However, the derivation could equally well have been carried out on the 
total pair correlation energies themselves, leading to an expression which is more 
convenient for actual calculations: 

E . . . .  : �88 E E E E P # v P 2 a  8~r~2a) (31 A)  
# v 2 a 

4. Pair Correlation Energy Approximation 

In atomic calculations [1], values of the diagonal terms, e~~ lie 
between 0 and 1 eV. We may expect that the "cross-terms" e(~[~w),/~r and 
2 r a, are much less in magnitude than the diagonal terms, and hence take very 
small values. Let us neglect the "cross-terms" as a first measure towards the use 
of Eq. (31). Then we have: 

eorr __ corr t(,~, ~) - 6,v 6~ t,~ , (33) 
corr = . . . .  (34) 

. . . . . . . . . . . .  and 6 is the Kronecker 5. where t ~  rr ~ t(u.Lu~.) , t),~. = V(,X.uZ ) 

Under these assumptions, 

t ( H #  1 cor, t 1 . . . .  } EMO=ZZPu~ ,+~b,,ZP~.ztuz + = Z P z ~ E ( p v l A a ) - � 8 9 1 8 9  ] . 
# v kk L / A,a 

(35) 
Note that the correlation correction now is non-zero only for diagonal ele- 

ments H ~  of the core Hamiltonian, and when Coulomb electron-repulsion in- 
tegrals (#p[ 22) are present in the repulsion integral summation. The expression 
for EMO is suitable for use in full overlap or in zero differential overlap all-valence- 
electron methods, further approximations to the electron repulsion integrals being 
made in the latter case. In either case the virial theorem may be introduced to 
give the final expression: 

IH , .... 1 1 .... ]} EMO=ZZPu~ u~-~6u~ZPa~e,a +~Pa,[(#vl)oa)-y(#a[2v)+6,,6z~ auk . 
. , . ~ 4,~ "(36) 

More simply, corresponding to Eq. (31 A), we have: 

__ 1 c o r r  E .... - z Z Z P, uP~e,~ . (361) 
It v 

The P~,v,H~,~ and (pvl2a) are determined by an ordinary LCAOMOSCF 
calculation, but the question of the values to be assigned to the pair correlation 
energies over atomic orbitals, a~ r~, in molecular calculations must now be con- 
sidered. 

5. Determination of  Pair Correlation Energies for Molecular Calculations 

One-centre pair correlation energies present less difficulty than two-centre 
correlation energies in practice. In the spirit of atoms-in-molecules approach [21], 
we may use the pair correlation energies already calculated for atoms as the one- 
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centre energies for molecules. The values listed in Table i are appropriate, although 
these may be replaced as better values become available [22]. 

For the time being a very simple approach to the calculation of two-centre pair 
correlation energies is taken. We make the series of assumptions, using A and B 
to represent different centres: 

~ A B ~ c o r r  1 (i) . _ , ~ .  - ~(euu + e**) at RAB = 0 .  (37 )  

e~2rr=0 at RAR = ~ ; (38) 

(ii) in the bonding region, a direct proportionality to the amount of overlap 
of orbitals ;~u and X, applies. 

g~orr 0(2 Spy (39)  

for RAB ~ Re, the equilibrium bond length. 
(iii) Electron correlation is still active when there is no overlap (S,v = 0) 

and manifests itself as the well-known London dispersion inter-molecular forces 
which are known to depend on the inverse sixth power of the internuclear distance 
[23], leading to the assumption: 

E~ ~ (3( R2~ , R ~  >~ R e . (40)  

An expression of the form 

1 [ corr corr 
. . . . .  2-ke/L/z + e~* ) (41) 

euv - -  kl S ; v  1 .a_ i b ( corr co r r~n6  
~2"~2~.8/ tu -[-~vv )KAB 

satisfies these assumptions. The only molecule in which pair correlation energies 
have been studied sufficiently to calibrate Eq. (41) is the hydrogen molecule. 
Thus the constant k 2 is found from the known van der Waals' interaction energy 
in hydrogen when S~v = 0, and then k I is determined from the known value of the 
two-centre correlation energy at the equilibrium bond length. With the data: 

e~ ] r r  = 1.1430 eV for helium (R = 0) [24], 

(e~,x~) .... = 1.1122eV for H2, Re=0.74084/~ 

and S ~ , ~  = 0.675997, calculated in this work using the orbital exponents $1~ = 1.197 
[25], we use also the quantum mechanical proportionality constant for London 
dispersion forces ~"AB'hdi~P [23]: 

c~di~p C/R6 AB 
= - 6 . 5 0  2 5 6 (42) e ao/RAB 

then 
k2 = - 1/C 

= -0.257505 (fiX) - 6  (eV) -1 

and with this k 2 value, k 1 = 0.734424. 
Finally invariance of the two-centre correlation formula to rotations of local 

axes is ensured by taking average valence shell overlap integrals between orbitals 
of the same type on the participating centres (eq. S~, S-~p, etc.): 

S, v (43) S ; v  = E A  2 B  A B 
,u v gt/~ H v 

21" 
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the sums being over all orbitals of the same n and l quantum numbers on each 
being the respective numbers of such orbitals. centre, and n~, n~ 

Thus two-centre pair correlation energies in the general case are given by: 

1 [ corr 2_ corr~ 
~ , .e . . .  G~ J (44) c o r r  - -  

e,~ - 0.7344S~-~ ~ - 0.2575 . ~[e# # 1  . . . . . . . . . . . .  ..f. e v  v j/KA B6 " 

Knowing the atomic monocentric pair correlation energies from the Table, 
correlation corrections in the molecular orbital energy, Eq. (35), are readily in- 
cluded in this approximate way. 

Eq. (44) is rotationally invariant only for values of monocentric pair correla- 
tion energies that maintain the relationships of those in the Table, e.g., all e .... (2P 2) 
on the one atom are taken to be the same, etc. 

6. Relation to Semi-Empirical Parameter Schemes 

The electron correlation derivation suggests a number of relationships 
important in understanding semi-empirical parameter schemes. In such schemes, 
elements of the core Hamiltonian together with Coulomb and exchange repul- 
sion integrals are estimated in a semi-empirical manner, and the remainder of the 
energy is either calculated from these parameters (full overlap methods) or 
neglected (differential overlap methods). Let us therefore consider only that portion 
of the energy containing the semi-empirical parameters (denoted by the subscript 
" s e " ) :  

heu (45) 
+ E E P,-..,{HS~ +i a =P, , . , , [=~vlv~)so - ~0~ l v v),o] 

# vvS# 

From Eq. (35), this same portion of the energy including correlation is given by: E1=~p.i.~{[H##_�88 eorrl j 1 . . . .  *.2 j - ~ G .  [(~#1 w )  + 2~.. ] 

+ 2 �89 P22[(##122)- �89 + 8~rr] t (46) 
4r J 

21_2 2 1 3 . . . .  P.., {H,., + ~- P.,~ [~(#v I v,u) - �89 I vv) + ~,,, 2}. 

As observed before, this is the only part of the energy in which correlation 
corrections need be made. 

Experimental atomic valence state ionization potentials are normally used 
in the choice of H~.  If Z, is an orbital on centre A, then: 

H~=-I~+ ~ xB<~lV,~l#> (47) 
B#A 

where I, is the appropriate valence state ionization potential, XB the core charge 
on atom B, and (#l VB] #) the nuclear attraction integral for an electron in orbital 
Zu and unit positive charge on atom B. Theoretically/, contains the kinetic energy 
integral and the nuclear attraction integral X A {# ]VA 1#). We may suppose that 
it also contains the one-centre correlation correction since I u is an observed atomic 
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quantity: i.e. 

I. = <#l - �89 ~z2 [#> + XA (#II)AI # > _ �88 ~A nv/~orr. (48) 
v 

Here n~ is the atomic occupation number of orbital X~ in the valence state atom. 
The corresponding part of the correlation-corrected molecular core Hamiltonian is: 

(/Ai _ 1  [~2 I]A> ~_ XA<# I QAI~> -- 1 2 Pvv B~orr , (49) 
v 

Thus the use of a semi-empirical core Hamiltonian involves: 
(i) The assumption that n~ ~ Pw, i.e. orbital occupations remain similar in 

free atom and molecule. 
(ii) The neglect of two-centre kinetic energy correlation corrections 

~ B  D cor r  

B ~ A  2 

a quantity likely to increase as larger molecules are considered. 
The semi-empirical electron repulsion integral (##[##)se is replaced by 

[(##1#/1)+2e~ ~] in the more exact expression. Whereas the same (/~#122)~e, 
kt ~ 2, is used in both diagonal and off-diagonal parts of E~, expression (46) 
shows that different values should be used, 

(##122) + e~rr in the diagonal part, 

( pp [22 ) -2e~  rr in the off-diagonal part. 

If these corrections are made to the Coulomb repulsion integrals, no adjustment 
of exchange repulsion integrals for electron correlation is required. Therefore either 
non-empirical exchange repulsion integrals may be used directly in semi-empirical 
schemes, or these integrals may be found from empirical Slater-Condon para- 
meters as suggested in the previous paper [5]. 

Note that the proper way to allow for correlation effects, when the correla- 
tion part of the wave function is not specifically found, is to apply the correlation 
correction, via Eq. (36), to calculate the total energy after the form of the MO's, 
Eq. (20), has been determined by solution of the Roothaan SCF equation. However 
the semi-empirical parameter schemes, /f they are assumed to include an energy 
allowance for correlation, imply an erroneous discussion of (## [ #/~)se and (/~#[ 22)se, 
prior to the computation of the Hartree-Fock eigenvectors. 

The derivation of this paper seems to have produced a very simple yet valuable 
method of making an energy correction for electron correlation. The method 
may be readily used in conjunction with accurate molecular Hartree-Fock 
(LCAO) calculations as well as with approximate MO theory. Its practical promise 
has been demonstrated elsewhere [27]. An investigation of the effects of electron 
correlation on molecular wave functions and electron densities is presently under 
way. 
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